Fields of Quantum Reference Frames based on Different Representations of Rational Numbers as States of Qubit Strings
نویسنده
چکیده
In this paper fields of quantum reference frames based on gauge transformations of rational string states are described in a way that, hopefully, makes them more understandable than their description in an earlier paper. The approach taken here is based on three main points: (1) There are a large number of different quantum theory representations of natural numbers, integers, and rational numbers as states of qubit strings. (2) For each representation, Cauchy sequences of rational string states give a representation of the real (and complex) numbers. A reference frame is associated to each representation. (3) Each frame contains a representation of all mathematical and physical theories that have the real and complex numbers as a scalar base for the theories. These points and other aspects of the resulting fields are then discussed and justified in some detail. Also two different methods of relating the frame field to physics are discussed.
منابع مشابه
Properties of Frame Fields based on Quantum Theory Representations of Real and Complex Numbers
Here quantum theory representations of real (R) and complex (C) numbers are described as equivalence classes of Cauchy sequences of states of single, finite strings of qukits where the qukit string states represent rational numbers. This work extends earlier work with qubit string states to qukit string states for any base k ≥ 2. Quantum theory representations differ from the usual classical re...
متن کاملReference Frame Fields based on Quantum Theory Representations of Real and Complex Numbers
A quantum theory representations of real (R) and complex (C) numbers is given that is based on states of single, finite strings of qukits for any base k ≥ 2. Arithmetic and transformation properties of these states are given, both for basis states representing rational numbers and linear superpositions of these states. Both unary representations and the possibility that qukits with k a prime nu...
متن کاملA Possible Approach to Inclusion of Space and Time in Frame Fields of Quantum Representations of Real and Complex Numbers
This work is based on the field of reference frames based on quantum representations of real and complex numbers described in other work. Here frame domains are expanded to include space and time lattices. Strings of qukits are described as hybrid systems as they are both mathematical and physical systems. As mathematical systems they represent numbers. As physical systems in each frame the str...
متن کاملDecoherence effects on quantum Fisher information of multi-qubit W states
Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...
متن کاملA Representation of Real and Complex Numbers in Quantum Theory
A quantum theoretic representation of real and complex numbers is described here as equivalence classes of Cauchy sequences of quantum states of finite strings of qubits. There are 4 types of qubits each with associated single qubit annihilation creation (a-c) operators that give the state and location of each qubit type on a 2 dimensional integer lattice. The string states, defined as finite p...
متن کامل